
The curious case of 
the point of sales
and why we still need pglogical

1

Jaime Casanova



2

SELECT * FROM me;

PostgreSQL contributor

Founder of PUG of Ecuador
● Mailing list: ecpug@postgresql.org
● twitter: @ecpug

Community support in spanish
● pgsql-es-ayuda@postgresql.org
● https://t.me/PostgreSQLes

Board member of 
"PostgreSQL Community Association of Canada"

CEO of Systemguards

mailto:ecpug@postgresql.org
mailto:pgsql-es-ayuda@postgresql.org
https://t.me/PostgreSQLes


3

SELECT * FROM me;

Twitter: @JCasanovaEC / @systemguards

Mail: jcasanov@systemguards.com.ec



Goals of this presentation

4



5

● A normal case that is not normal

● An initial solution

● A solution that gives some problems

● Next steps

● pglogical vs. native logical replication



A normal case that is not 
normal

6



7

A company in Ecuador that sales 
medicines in several points across 
the country: 

● 40+ POS
○ Inventory
○ Invoicing

● Old system in VB/MS SQL Server

● Migrated to Odoo/PostgreSQL 11



8

● Company works mostly on 
little cities and rural areas

● Available networks are:
○ unstable
○ slow



An initial solution

9



10

● Every store has its own 
copy of the database

● Old system used a 
home-made script for 
synchronization

● We use pglogical 2



11

● Logical decoding feature was introduced on 9.4

● pglogical
○ was developed by 2ndQuadrant (now an EDB 

company)
○ current open source version: 2.4.2

■ https://github.com/2ndQuadrant/pglogical
■ runs on 9.4 upto 15

● Native logical replication introduced in v10, with 
limited features and heavily based on pglogical 
extension

https://github.com/2ndQuadrant/pglogical


12

Logical replication definitions

● It does a per database replication, not whole cluster
○ It does not use triggers but decode of WAL records

● We need to define what tables and sequences will be 
replicated and which operations 
(INSERT/UPDATE/DELETE)
○ replication_set on pglogical
○ PUBLICATION on native logical replication

● a subscriber (replica) asks the origin for the information 
published by a PUBLICATION (replication_set)



13

Common configuration



14

Configuring replication_sets



15

Classifying tables

● 139 tables whose data originated on central and must be 
replicated to the stores
○ replication_set := set_acme_cat_down

● 35 tables whose data originated on the stores and must 
be replicated to the central
○ replication_set := set_acme_cat_up

● 5 tables that could be written anywhere and the changes 
must be propagated to all the stores and the central
○ replication_set := set_acme_shared_tables



16

replication_set: set_acme_cat_down



17

On every store, to subscribe data generated on central



18

replication_set: set_acme_cat_up



19

On central, to subscribe data generated on every store



20

Does replicated data generates conflicts?

● you can avoid them by:
○ having enough information on the table
○ using uuid as primary key
○ assign a range of values per store
○ Do as instagram to generate a conflict-free ID that 

is deterministic: 
https://instagram-engineering.com/sharding-ids-a
t-instagram-1cf5a71e5a5c

https://instagram-engineering.com/sharding-ids-at-instagram-1cf5a71e5a5c
https://instagram-engineering.com/sharding-ids-at-instagram-1cf5a71e5a5c


21

replication_set: set_acme_shared_tables



22



A solution that gives some 
problems

23



24

● The initial copy of data for set_acme_cat_down 
replication set could take upto 10 hours 
○ We use pg_dump to move data "faster"

● After creation we need to recheck for missing rows



25

● A subscription generates one wal sender on the 
provider 
○ There are two subscription getting data from 

central

● When the store # 70 was created… and we reached 
140 decoding processes the server's temperature 
went up to a critical level



26



27

● A patch for using LWLocks instead of spinlocks was 
provided to customer
○ Álvaro Herrera contributed an improved version of 

the patch using atomics
○ https://www.postgresql.org/message-id/flat/20200

831182156.GA3983@alvherre.pgsql
● Starting 12.2 an independent commit of a patch from 

Pierre Ducroquet reduced the contention
○ https://www.postgresql.org/message-id/flat/293101

8.Vxl9zapr77%40pierred-pdoc

https://www.postgresql.org/message-id/flat/20200831182156.GA3983@alvherre.pgsql
https://www.postgresql.org/message-id/flat/20200831182156.GA3983@alvherre.pgsql
https://www.postgresql.org/message-id/flat/2931018.Vxl9zapr77%40pierred-pdoc
https://www.postgresql.org/message-id/flat/2931018.Vxl9zapr77%40pierred-pdoc


Next steps

28



29



30

When the store # 142 was created… 



31



pglogical vs. native logical replication

32



33

Native logical replication

● continuously improved
● 14: large in-progress transactions could be streamed 

before commit
● 15: ALTER SUBSCRIPTION … SKIP
● It always work on cascade mode
● there isn't any conflict resolution



Thank you 
Any Questions?

34


